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ABSTRACT

This report examines the problem of adaptively tracking a

maneuvering submarine in two dimensional space utilizing passive time

delay and Doppler frequency measurements of unknown or randomly

varying center frequencies. The target is free to maneuver in

* - velocity and depth with tracking being done in the vertical plane.

'I It is pointed out how to incorporate bearing measurements into the

present polar model to achieve a three dimensional target tracking

capability.
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Chapter 1

1.1 Introduction

Duiring the past several years much effort has been spent in the

development of sophisticated digital filtering algorithms for tracking

maneuvering targets. A common method has been to model the target

dynamics in a rectangular coordinate system which results in a linear

set of state equations, but forces the measurements to be nonlinear

functions of the state variables. With this model an extended Kalman

filtering algorithm is frequently used both to provide current state

variable estimates and, by a one-step prediction process, to linearize

the next measurement vector. This method works moderately well until

the target makes an abrupt change in its trajectory in response to

pilot or missile-guidance program commands. In this situation the

velocity and position estimates can, and often do, diverge from the

true unknown values. The inherent problems of this approach can lead

to large bias errors and sometimes complete filter divergence.

Earlier work on the maneuvering target tracking problem includes

Jazwinski's limited memory filtering [1], in which the filter gains

are prevented from decaying to zero. Another technique, described

by Thorp [2], involves switching between two Kalman filters in res-

ponse to a detected maneuver. A third approach, due to Singer [31,

models the target trajectory as a response of the target model to

a time-correlated random acceleration. With this method additional
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state variables are used to generate the correlated forcing func-

tions which, in turn, increase the dimension of the Kalman filtering

algorithm. In this manner the technique provides the filter with

statistical information concerning target maneuvers based on an as-

sumed range of possible aaelerations. Singer's method was subsequen-

tly extended by many others.

Parallel to the effort was the method of modeling major changes

in target trajectories by a semi-Markov process. An application of

this approach to tracking maneuvering targets in two-dimensions by

Moose [41 was successfully extended by Gholson and Moose [5] to

three-dimensional tracking.

The general approach which uses the "adaptive semi-Markov man-

euver model" of [4] and [5] implies a discretization of possible

vehicle accelerations or velocities. The estimation algorithm then

view-s the maneuvering vehicle as if it is responding to commands which

are modeled by a semi-Markov process, i.e., a random process with a

finite number of "states" (commands) which are selected according to

the transition probabilities of a Markov process. A semi-Markov pro-

cess differs from a Markov process in that the duration of time in

one state prior to switching to another state is itself a random var-

ble [6]. Incorporating the semi-Markov concept into a Bayesian esti-

mator of [4] and [5]. This estimation algorithm provides a substan-

tial improvement in filter stability, which means that large bias

errors are prevented from being built up due to unmodeled target accel-

erations. An important aspect of this adaptive estimation algorithm

is its elimination of a "growing memory" which is prevalent in many

adaptive filters.
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1.2 Target Modeling

With the brief history of the maneuvering target tracking pro-

blem presented in the previous section, we see a general progression

in the sophistication of tracking filter design stemming primarily

from the method in which the unknown target accelerations are modeled.

This trend is graphically outlined in Figure 1.1

jInitially, target maneuvers were modeled as the response to
uncorrelated, zero-mean variations about a nonaccelerating target,

j shown in Figure 1(A). As a result, the estimation algorithm could

follow only those maneuvers which were comparable with the input noise

level. Furthermore, the filtering results during nonmaneuvering sit-

uations were seriously degraded due to the uncorrelated input noise.

As shown in Figure 1(B), Singer [3] attempted to model large-scale

maneuvers by assuming a time-correlated input process and incorpora-

ting the statistics into the subsequent filter design. In Figure 1(C)

large-scale target maneuvers were modeled as a stochastic process whose

mean-value switched randomly from among a finite set of predetermined

values. The adaptive estimation algorithm mentioned in the previous

section could then be used to track the maneuvering target. This

method was seriously restricted, however, by the requirement of a

large number of preselected mean values in order to ensure convergence

of the estimation process. In this report we show that by combining

the concepts illustrated in Figure 1(B) and Figure 1(C) the number of

mean values required to prevent filter divergence is greatly reduced.

This combination is illustrated in Figure 1(D). The primary benefit

of this approach is the large saving in computational effort. An

additional benefit, at least from a subjective viewpoint, is that the
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Figure 1.2. Target motion model.
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time-correlated,randomly switching,mean-forcing function more ade-

quately models real-world target maneuvers.

The basic target modeling ideas are shown in Figure 1.2. The tar-

get trajectory is generated by the random selection of an input time-

correlated Gaussian process whose mean value ui is applied to the tar-

get plant dynamics for a random duration of time. This input distur-

bance process lasts until a new input uj is randomly chosen from among

a finite set of n possible inputs. With this model as a background

and using an appropriate choice of state variable equations to repre-

sent target dynamics, either submarine or aircraft, it is possible

to develop an "optimal" (in the minimum mean-square error sense)

tracking filter that adaptively learns, then quickly adjusts itself

for each major alteration of target trajectory.

1.3 Incorporation of Singer Process into the Target Dynamics

In incorporating the correlated process, the linearized spheri-

cal model of [5] is preserved. To this end, consider a target whose

motion in rectangular coordinates is described by

x -ax + u + w'

' -aw' + w (..)I
x x x

where

a is a drag coefficient

ux is the deterministic input in the x direction randomly

chosen from a set of N possible inputs.

w' is the Singer correlated acceleration process acting
x

in the x direction with a time constant T I/a. Thisc

process used throughout the report is shown modeled in

Figure 1.3.
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w is a white Gaussian random process acting in the x direction
x

A similar set of equations exists for the y and z directions.

Defining

Xl x

x2

x W

3 x

the following continuous time state variable model is obtained for

Equation (1.3.1)

" 0 1 0 x 0 0

0 -a 1 x2 ++ 0 w (1.3.2)x2  - 1 x2  0 +x  1

x 0 0 -a - 0 1
L J

Discretizing (1.3.2) in time yields

1 A B x C ," D

x - 0 E F x2  + A u + G w (1.3.3)2 2 Xk xk

x3 0 0 eaT x L0  J

k+l k

where

A - (I - e-'T)/a

B - [I + (ae-a T - e- a ) / (a- a)] / (aa)

C (T - 1 + e a

D [T + (aA - aJ)/(a - a)]/(aa)

E -e
aT

-aT -ciT
F (e -e )/(a -a)
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G (J -A) /a - a)

e -JaT )/a

A similar state variable model is assumed to exist for the yand z directions.
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Chapter 2

UNDERWATER PASSIVE TRACKING. INTRODUCTION AND LINEARIZED POLAR MODEL

FOR THE MANEUVERING OBSERVER-SOURCE SCENARIO

2.1 Introduction,

The tracking of air targets such as described in [71 is charac-

terized by high quality radar data provid~lng good system observability

j and high signal-to-noise ratio. In underwater passive submarine trac-

king on the other hand, the situation is characterized by meager data

which, when it is available, is almost always a nonlinear function of

the system state variables.

The particular problem which is addressed in this chapter and

in the remainder of this report is how to track the target submarine

(Source) from the moving Observer submarine using sonar sianaZs eman-

ating from the Source. Because the Observer does not use an active

sonar but rather listens to sound waves emanating from the Source,

this method of tracking has acquired the name passive tracking.

It is pointed out in [71 in conjunction with air targets that in

order to successfully track a maneuvering target in three dimensions

the dynamics must be realistically modeled in the chosen coordinate

system and secondly that an adaptive feature must be designed to pre-

vent filter divergence as the target executes evasive maneuvers. These

two requirements are of equal importance in the underwater passive trac-

king domain.
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The availability of air target radar data in spherical coordi-

nates suggests that coordinate system as being the "natural" one in

which to design a tracking filter. In the underwater case, the selec-

tion of a "natural" coordinate system based on the available data is a

much more obscure process. This is true because almost all the avail-

able data are nonlinear functions of the state variables regardless of

any coordinate system choesn. It is a major goal of this report to

address this problem in detail. It will be shown that for a certain

subset of the observables, a "natural" coordinate system does indeed

exist. Th4s discovery will then be exploited to design a "pseudo-

linear" filter to process this subset of the observables using only

linear filiering techniques.

2.2 Statle of the Art

The problem of passively tracking underwater targets has re-

ceived very little attention in the literature. What little exposure

has occurred has tended to concenetrate on the bearings-only approach.

In this method the Observer monitors his bearing to the Source, over

a period of time. Usually the Observer must execute a known maneu-

ver to remove the ambiguity that sometimes exists with this type of

tracking algorithm.

In a very interesting paper, Hassab [8] passively tracks the

maneuvering Source in three dimensions by exploiting the combination of

bearing measurements and sonar time delays between the direct, bottom

reflected and surface reflected sound waves emitted by a Source. Since
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these time delays and bearing measurements are nonlinear functions of

the state variables in the rectangular coordinate system used. The

Extended Kalman Filter is employed to provide optimal estimates of

the Source range, bearing, velocity and depth with respect to the moving

'Observer. The state vector consists of three rectangular position com-

ponents (Rx, Ry, R z ) and three rectangular velocity components (V , Vy,

V ). A constant velocity model is used for the Source dynamics with
z

an additive white Gaussian noise perturbation. Because of the choice

of a rectangular coordinate system, the processing of the bearing mea-

surements becomes coupled to the processing of the time delay measure-

ments resulting in a 3 x 6 linearized measurement matrix having the

following generic form:

s 0 0 0

aR 3R
x y

2.T
0 -2 0

x y' z [(2.2.1)

2 0 ' 2 0 3 --) 0
o R o

L z

where Ti , r2 are the bearing and two sonar time delays, respectively.

In [9] a relative rectangular coordinate system is again chosen

to model the Observer-Source scenario. The measurements used here are

bearing and direct/surface reflected sonar time delays. Since these

make the system unobservable, the Source is assumed to be at the same

depth as the Observer. Again, the measurements are nonlinear
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functions of the state variables with coupling occurring between the

processing of bearing and time delay measurements.

One of the factors which makes rectangular coordinates appear so

attractive for passive tracking is that compensation for Observer motion

in this coordinate system is relatively simple, involving only a linear

subtraction. For example, if

V x component of Source velocity with respect to

s the ocean floor

V X x component of Observer velocity with respect to
0 the ocean floor

R relative distance between the x coordinates of the
X Source and Observer

then, assuming a constant velocity model for the Source [8)

X ] V (k) (2.2.2)

Thus rectangular coordinates offer a very convenient method of

compensation for Observer motion.

HTowever, rectangular coordinates are a very poor coordinate sys-

tem in which to filter when one considers the types of measurement data

other than sonar time delays available for passive tracking. For ex-

ample, Source bearing with respect to the Observer is one of the most

consistently available measurements. Another commonly available mea-

surement data consists of Source line frequency spectra which are

emitted from various mechanical elements aboard the Source.

In filtering in relative rectangular coordinates (x, y, z)

these types of measurement data are inherently nonlinear functions of



the Source state variables. For example, bearing involves the arc

tangent function of Source x and y relative coordinates. The line fre-

quency spectra, when used in Doppler tracking with an unknown center fre-

quency f0, involve the product of state variables and again a nonlinear

estimation problem must be solved.

In an attempt to find a more suitable coordinate system for

passive tracking, Tenney et al. [10] propose a relative coordinate sys-

tem based on the closest point of approach (CPA) for use with Doppler

tracking. This approach requires that

i. the measurement matrix be relinearized at
each iteration;

2. the Source trajectory be of the "crossing"
variety to produce a closest point of
approach;

3. the center frequency of the transmitted
signal be known and constant.

The presence of bearing observations suggests either polar or

spherical coordinates as a more suitable system in which to filter.

This is true in light of earlier work where a linearized spherical fil-

ter was used to process spherical measurement data using linear filtering

theory while permitting decoupling of each coordinate direction. Thus,

for example, the bearing measurements available to the Observer could

be decoupled from the time delay measurements and processed independ-

ently in either of these two coordinate systems. While the sonar time

delay measurements would continue to be coupled together and necessitate

a nonlinear filter such as the Extended Kalman filter, the decoupling

of the bearing tracker from the time delays would represent a signi-

ficant reduction in the complexity of the nonlinear filter. For

example, if filtering in polar coordinates is undertaken, then because

of the decoupling of the bearing channel the time delay processing
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would involve linearizing the measurement matrix about only two state

variables rather than about three state variables as in Equation (..)

To distinguish between the merits of spherical and polar co-

ordinates, consider Figure 2.3.1. Assume that both the Observer and

Source depths remain unchanged; therefore z0. If the Source radial
so

rate ; is non-zero then in spherical coordinates the elevation ratee

is also non-zero, even if is some fixed value. In polar coordini-

ates, on the other hand, and with these same conditions, the Source ver-

tical rate z~is, of course, zero. The implications of all this

are that in spherical coordinates the generally, non-zero elevation rate

requires a sophisticated modeling technique for the Source input

acting in the elevation direction. This technique would involve several

overlapping Gaussian curves and also an adaptive technique to provide a

weighted sum. It will be shown in Chapter 3 that with polar coordinates,

on the other hand, the source Z direction input can be modeled in a par-

ticularly simple manner using only a single Gaussian curie having a

mean value equal to zero.

It will also be shown later that polar coordinates oossess ex-

tremely attractive features for passive tracking using the Doppler

effect. For these reasons it is decided to undertake passive tracking

of a moving Source from a moving Observer in the polar coordinate sys-

temn.

Of course, while polar coordinates offer the advantages out-

lined above, there is a concomitant penalty in that compensation for Ob-

server motion in this coordinate system is more difficult and complexI

than for the rectangular case. To appreciate this point, consider the

13



* state model given by Equation (2.2.2). If one imagines a rectangular

coordinate system attached to and moving with the Observer, then the

state model (2.2.2) provides estimates of the target state variables

with respect to this moving coordinate system. However, regardless of

the maneuvers executed by the Source and Observer, this coordinate sys-

tem always translates parallel to itself.

Referring to Figure 2.3.1, consider a polar coordinate system

attached to and moving with the Observer. As the Observer and Source

maneuver with respect to each other the direction of che polar radius

vector p connecting the Observer to the Source changes its direction in

keeping with the changing relative positions. Therefore the polar co-

ordinate system attached to the Observer rotates in addition to trans-

lating and it is the added complexity caused by this rotation that ren-

ders more difficult the task of formulating a state variable model in

polar coordinates which accurately compensates for Observer motion.

It is this problem which is solved in the next section.

2.3 Linearized Polar Model for the Dynamics of the Maneuvering

Observer-Source Scenario

Consider Figure 2.3.1 which shows the geometry of the Observer-

Source scenario in polar coordinates. In this figure, the plane defined

by the X-Y axes is parallel to the ocean bed and fixed with respect

thereto. The horizontal distance separating the Source and Observer is

labeled P and will be referred to in the future simply as the radius.

This polar radius is to be distinguished from the spherical radius

labeled r which is the distance separating the Observer and Source in

three-dimensional space. The vertical distance z sois simply the diff-

erences in their depths. Figure 2.3.2 is the projection of Figure 2.3.1

onto the X-Y plane. The parameters appearing in this figure are defined

Iin Table 1.3.1. 14
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The linearized polar model is developed using a modified ver-

sion of the approximate modeling technique of Reference (5) except that

now, the origin of the conrdinate system is moving.

P CHANNEL MODEL

0k+ calculation:

Referring to Figure 1.3.2

= (X -Xo 2 + Y o 211/2

P- - 2~ (y -

. s -x) .. - (x -

o ( -Yo) 
- ()0 - y)

s 0
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Table 2.3.1

Explanation of Parameters Appearing in Figure 3.3.2

P the polar radius

V the velocity vector of the Observer

the angle between the polar radius p
and the (fixed) X axis

Bo  angle between the X axis and the

velocity vector of the Observer

$SO the relative bearing of the Source
with respect to the Observer

V an x-directed vector, used forx illustrative purposes

V a y-directed vector, used for
illustrative purposes

i a unit vector in the direction of
increasing angle 8

V projection of the Observer velocity
o$ vector onto i

X 0 9 Y 0 9 X S 9 y S

position coordinates of the Observer
and Source, respectively, in the
rectangular coordinate system

18



- (x - - _o
) 00 _ - Y7s) (2 .3.2)

is expanded as follows keeping only the linear terms:

+k+l k 93--k (Xs X) + - (y -v )
kl k ask sk+l -3k as 'k sk+l sk

-- x ao _ 0  - Yok) (2.3.3)
3-o1k (Xkk+l Ok) Yo-lk (Yk+ k

Assuming a linear drag model for the Source as given in (1.3.1), upon

substituting (2.3.1) into (2.3.3) for the Source connected terms, and we get

(Xk 1 - Xk) - k + BWx + Cu
x k Xk

(xs - xo )
k k .1 [Ai + Bw' + Cu +DwiOk+l Pk + k S SX sx s k0 x x x k

(ys - yo)
+ ( A + Bw' + Cu + Ds

P 'k S S S S
y y y'~

(x3 x (Y - 7 )

'k 0 Pk+ - k k Yk+l - k

(2-.3.4)

In the above equation and in all subsequent analysis, subscripts s and

o refer to the Source and the Observer, respectively.

Now

(x ) T
(k+l "k ok

and (2.3.5)

(y - ) o T
0k+l 0k

Combining terms with like coefficients in (2.3.4) and making use of

(2.3.5),

.* 19



(x x) (y - y)
k+l 0 + A[ xs +k

+ ((x s  x )  (Ys - 7 )

+w + s 0 ]s x s yi k

C o kU s x  3 y Sy k

(x s x 0 (Ys - yo)

+ w]
x 0y k

(x - x) ( - y0)
T[ + oo o

P 0 P 0

(2.3.6)

Consider the coefficient of B appearing in Equation (2.3.6). From Fig-

ure 2.3.2, (x s - Xo) and (ys - YO)  are the direction cosines between
P 0

the X and Y axes, respectively, and the o direction. Hence

(xs - xo) W' + (7s - Yo)  W' W r 2 3 7s s V (2.3.7)

is the sum of the projecions of w' and w' cnto the P direction. This
x y

sum acting in the P direction can be replaced by a single equivalent

term denoted by w; . In a similar manner the coefficients of C and Ds
p

are called u and w respectively. The coefficient of A in (2.3.6)5 5

represents the projection of the Source velocity onto the radial direc-

tion. This coefficient must be recast in a different formuiation in

order to complete the state model of (2.3.6). To this end Equation

(2.3.2) is rewritten as foll-ws:

20



(xs -x) (ys "o) * (xs - x0 ) 0 - 7o)
. + y}s. + + 0

s p .

(2 .3.8)

(x X yox)) Co(Ys - ( . 9
using+o -V Cosx +2.3.9)

Pp 0 so

using 2.3.8 and 2.3.9 yields

( 0 - S 0 (2 -Yo
xY + v = + V Cos8 (2.3.10)

p p 0 so

Substituting Equations (2.3.9) and (2.3.10) for the coefficients of

T and A, respectively, in (2.3.6) and collecting like terms results in

the following state variable model:

A,~ + B' + Cu + Dw + (A-T)(V Cos8 )8 (2.3.11)

A similar approach is taken to develop a state model for k 1

By assuming that the Observer maintains a constant velocity for long

periods of time, and that w' is a zero mean correlated GAUSSIAN randomso

process acting in the p direction the following state equations are

easily obtained.Pf I Ai Bi - (-)
L i] E jE + A (E-1) L6 G w

oC w s0so k s
0 0 e 0 0

s k+l -L Jk

(2.3.12)

The underlying constraint for the state model (2.3.12) requires that

the Observer adopt a constant velocity profile.

21



Z Channel

Using a discretized version of the basic linearized drag model

of chapter 1, and letting z be the relative separation between
so

Source and Observer the following state model is presented.

Zso 1 A B 1 so FC (A-T)" s "D1 E F so + A (E-l) 0zi Gws
wt I  0 0 e - a  s41 0 0 J k

k+l L- ea-J- LJ

(2.3.13)

The state model is also subject to the constraint of a constant

velocity Observer.

It is interesting to observe that both state models (2.3.12)

and (2.3.13) are identical although the types of manipulations involved

in the derivations are quite different. For example, a Taylor series

expansion is used to derive (2.3.12) whereas no such expansion is

used in deriving (2.3.13).

Bearing Channel

From a similar development the resultant state equations are presented.

22



1

3 oI A (B /P k) s (C/P k ) (A s6

E-l); V°Sineso
so E (F/k) iso + (A/pk) (E-o1) 0 s

' I
e aT ol 0o -

-- .k t.

w

+ (G/Ok) s

J (2.3.14)

Thic s-tae 4ale iS SubjeCt to thC ....t *r... a

15 -- -- ------ M _ ~ a.S

0 k+l 0 k

This completes the derivation of the linearized polar model in relative

coordinates for the moving Observer-Source scenario. In the next chap-

ter this model will be applied to passively track a maneuvering Source

using sonar time delays.

2.4 Conclusion

Before closing, a comment needs to be made concerning the con-

straints which the preceding state variable models place on the Observer

motion. While the state variable models are only valid for a non-

maneuvering, i.e. constant velocity Observer, this does not mean that

the Observer cannot execute any maneuvers. What is implied is that

during the maneuver the state models are inaccurate and will not yield

good estimates. Upon completion of the Observer maneuver, the model is

23



once again valid and will yield good estimates. Of course, during a

maneuver transients are introduced and consequently any filter would

inevitably yield poor estimates during this period.

24
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Chapter 3

PASSIVE TRACKING USING SONAR TIME DELAYS. THE ADAPTIVE
EXTENDED POLAR KALMAN FILTER.

3.1 Introduction

In this chapter the linear polar model which was develiped in

Chapter 2 will be employed to passively track a maneuvering Source using

sonar time delays. Figure 3.1.1, which uses notation similar to that

in Hassab [ 8], gives the two-dimensional geometry showing the paths

traversed by the Source-emitted sonar signals in question. The "direct"

signal traverses the path labeled r. The "surface reflected" signal

traverses the path labeled R - R and TI is the difference in time of2s ls 1

arrival between this signal and the "direct" signal, as meesured at the

Observer. The "bottom reflected" signal traverses the path labeled

R2b - Rib' and T2 is the difference in time of arrival between this

signal and the direct signal, as measured at the Observer.

From Hassab's work [ 8] the equations, which are repeated below

for convenience, show that r and r2 are nonlinear functions of the

system state variables p and z as given in Figure 3.1.1.

1/2 21/2
T  2 + 4H 2 4H z (P_ + z ] /C

so 01 H0 1 soo

02 2 H022 1/2 2 1/2

T 2 [(P +z5s +4H 0 2  + 4H0 2 z0) (P + z ]/C

(3.1.2)
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Therefore the Extended Kalman Filter must be employed to provide optimal

estimates in the presence of these nonlinear measurements.

The 'adaptive filter approach developed in [ 5] was earlier

applied with much success to tracking maneuvering air targets. This

approach will now be applied in the underwater environment to passively

track a maneuvering Source from a moving Observer using the measurements

(3.1.1) and (3.1.2). Because of the coupling in (3.1.1) and (3.1.2) between

the P and z state variables, the p and z channels cannot be filtered

independently. Rather the two models developed separately in Chapter 2

must be combined in the manner described in Section 3.2.

A modified version of the conventional Extended Kalman Filter

algorithm must be devplo1ned in order Io acoIodate nonlinear filtering

using the adaptive filter approach. This will also be described in

the next section.

3.2 Combined 0/z Channel Filtering of Sonar Time Delays Using the
Augmented Extended Polar Kalman Filter

Consider the following combined p/z state vector:

(p p W z w'S z

where the subscript so on z has been dropped for notational conve-so

nience. The linearized state variable model corresponding to this

state vector is given in Equation (3.2.1). Defining

Mk~ +ui + IWk

where:
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Consider the deterministic input vector (3.2.1). The first

entry, namely u s (i), refers to the mean value of the ith Gaussian

curve in the series of N partially overlapping Gaussian curves

now being used to model the Source p channel input. Likewise the

superscript i on u Ci)M in (3.2.1) refers to the ith Gaussian

curve which is being used to model the Source z channel input.

The last entry, namely z , is the (known) Observer velocity in

the Z direction or vertical direction.

In general, the Source does not execute many maneuvers in

the Z direction. Whenever such a maneuver does take place it lasts only

for a brief period. This is true because the Source can move upward

only as far as the ocean surface and downward to its maximum permissible

depth, which is usually a relatively small distance compared to the

ocean depth. Therefore the Source is quite constrained in its movement

along the Z direction in Figure 3.1.1. The conclusion to be drawn from

this is that the Source input u5 is generally zero with there being
z

only brief periods of time when it is non-zero. Therefore in modeling

the Source input in the Z direction, only one time correlated Gaussian

curve with a mean value of zero is needed. However, since the measure-

ments are nonlineup functions of the state variables the extended

Kalamon filter is used.
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3.3 Summary of the Extended Kalman Filter

The Extended Kalman filter is usually the first filter to be

used when confronted with either system or measurement nonlinearities,

or both. This filter is well documented (111 and is summarized

in (3.2.2) - (3.2.7) for a linear system with nonlinear measurements.

P(k+lIk+l) " [I-K{X(k+llk) }H{X(k+llk)}]P(k+lIk)

X fI-K{X(k+llk)}a{X(k+llk) }]T

+ K{X(k+llk) R(k+l)K{X(k+lIk) T (3.2.2)

K{X(k+lk)} P(k+l k)HT{x(k+Ik)}[H{X(k+lfk)IP(k+llk)H{X(k+lIk)}T

+ R(k+l)]- (3.2.3)

T + T
F(k+lIk) - OP(kik) + ?Q(k)-T + FQurT  (3.2.4)

X(k+l4k+l) - X(k+llk) + K{kX(k+Iik)I[z(k+l)-h{X(k+I k)}3 (3.2.5)

X(k+llk) - bX(klk) + ru(k) (3.2.6)

ahi(X)

H{X(k+llk)l}= - - I(k+lIk) (3.2.7)

Several comments need to be made concerning the above algorithm:

I. Equation (3.2.2) for the updated covariance
involves more terms than are usually used,
namely

P(k+k+l)- [I-K{(k+llk)}H{X(k+llk)}]P(k+llk) (3.2.8)

The additional terms appearing in (3.2.2) which
do not appear in (3.2.8) are necessary to
guarantee that P(k+llk+l) is always symmetric.
The loss of symmetry that may occur in using
(3.2.8) in the Extended algorithm arises
from the approximate nature of this filtering
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algorithm, especially the approximate
value for the Kalman Gain matrix which
the algorithm is only capable of pro-
ducing.

2. The Kalman Gain matrix is shown to be a
function of the predicted estimate
X(k+llk) by explicitly including this
term in its argument. This functional
relationship arises from the presence
in Equation (3.2.3) of the linearized
measurement matrix H{X(k+llk)}. This
linearized measurement matrix is defined
by

3h.(X)
H{Xk+llk)} [ . ]1X(k+llk)

3. The measurement residuals are formed by
evaluating the nonlinear functional
relationships in (3.2.5) using the pre-
dicted estimate.

4. The additional term rQurT in (3.2.4) is
u cu LU aLLUUiL JuL LLe uiLmacLhL Uf
u(i) and the actual unknown u.

With the above comments complete, the adaptive Extended Kalman filter

algorithm is now discussed.

3.4 The Adaptive Tracking Filter

The heart of the adaptive filter developed in this report is

the forming of the estimate of the target states, in each channel, from

a weighted san of estimates conditioned on the N possible discrete input

leveis.

Consider the state model (3.2.1). This state model views the

target input acting in the polar direction as being derived from a

time correlated Gaussian density having a mean value u . Next considerp

a series of N such Gaussian curves with displaced mean values

u , i - 1, 2, . ., N and partially overlapping "tails" as shown inP

Figure 3.2.1. If a bank of N Kalman filters is formed, each filter

based on the state equations of equation (3.2.1) with the deterministic
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input u being a different one of these N mean values, then a seriesp

of N estimates is obtained, each conditioned on a different Gaussian

curve. Next a weighted sum of these estimates is obtained in a manner

to be disclosed below, and this weighted sum is taken to be the

unconditioned estimate of the target states.

Calculation of weighting coefficients: The general case

As previously discussed, the target input is now modeled as

coming from a series of N overlapping Gaussian curves each of which

has a predetermined mean value. As the target executes a series of

evasive maneuvers in the polar channel, for example, the changing input

to produce these maneuvers is viewed as randomly switching among these

N curves. By applying the semi-Markov statistics to this switching

process a series of N probabilities ri, i = , ., ., N is generated

7] where

W i = Pr {target input is being derived from the Gaussin

curve whose mean value is u (i)
P

These W. are then used to form the weighted estimate.

We begin with the well-known relation that the optimal estimate

can be written as a weighted sum of the input-conditioned estimates

as shown in figure 3.2.2 (111. Thus if X(i)(k+l) represents the optimal

estimate of X(k+l) given that the ith input force u i) is present

(the ith-input force being one of the previously described mean values),

then based on the data sequence

Z(k+l) = {z(l), z(2), ..., z(k), z(k+l)},

we define

N
x(k+l) - x (k+l) W i(k+l) (3.2.9)
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where

W(k+l) -Pr {u(k) u(i)Izck+l)} (3.2.10)

and

-(i) (ix (k+1) - E~x(k+l)lu(k) -u ,Z(k+l)J.

Equation (3.2.9) is a total probability expression developed from the

basic relation that

x(k+l) = E{x(k+l)IZ(k+l)}

is the optimal mean-squared estimate. It is well known that the

optimal input-conditioned estimates are provided by suitably matched

Kalman filters. In particular, for the il- filter

X (k+l) 1 (k)x(i)(k) + r(k)u(i) + K(k+l) [z(k+l)

-H4O(k)^Mi(k) - HF(k) ui

wh ~rP

K(k+1) - M(k+l) H T[HM(k+l) H T+ R] -

M(k+l) = O(k) P(k) 0 (k) + 'I(k) QT T (k)

and

P(k+l) - [I - K(k+l)H] M(k+l).

The matrices (D, r and T~ are used to denote the respective coefficient

matrices in (3.2.1).

The following is an outline of the analysis given in [ 5 ]to

calculate the recursive weighting coefficients Wi, i =1, 2, ... , N.

Defining z(k+l) - ZZk), z(k+l)), apply Bayes Theorem to (3.2.10) and

obtain

Pr Muk ~)Zk1pzk~)uk () ~)
W k1 p{z(k+l)JZ(k)1

(3.2.11)
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The denominator, which varies with time; is independent of i and is

therefore common to each Wi(k+l) as a normalizing constant. The first

numerator factor is determined from the semi-Markov input process.

Expanding this factor in a total probability expression,

M! N
Pr(u(k) = u i IZ(k)} - I Pr{u(k)=u(i)Iu(k - l)=u (j ), Z(k)}Wj(k).

And since Z(k) has no influence on the Markov state transitions,

Mi N

Pr~u(k) - ue Z(k)} 1 ji Wj(k) (3.2.12)
j=l

where the semi-Markov probability is

e.. = Pr{u(k) = u(i Iu(k-1) u (j ) }ii

Combining (3.2.11) and (3.2.12)

nMi ... r . . .. . 2./1% /- 11
Wi(k+l) = C p{z(k+i)ju(k) = u (i), Z L)} ji W.(k " k.h1)

j=l

where C is a normalizing constant

is the desired recursive relation for W.. The required density p is1

approximately normally distributed and has distribution

P{z(k+l)lu(k) = u(i), Z(k)} n N {mi(k+l), Ci(k+l)}, (3.2.14)

where

m i(k+l) = H[O(k) (i)(k) + r(k) u(i)(k)] (3.2.15)

and

C. (k+l) = [HM(k+l) HT + R]
1

Consider the measurement density conditioned on the ith mean

value as given in (3.2.14). This density has covariance given by (3.2.15).

What characterizes the different target "states" is the set of N

Gaussian curves used to model the switching input. However, the target

dynamics remain the same for all the "states". Consequently, if the
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process and measurement noise covariances Q(k+l) and R(k+l), respec-

tively, are assumed to remain constant as the target switches from

one "state" to another, then none of the quantities on the right is

conditioned on i. Under these conditions, for a given value of

(k+l), Ci(k+l) has the same value for all values of i = 1, 2,

n. Indeed it is clear that for each value of (k+l), the entire

covariance analysis is identical for each filter in the previously

mentioned filter "bank". Therefore, the bank of filters computationaly

is not much more than that of a single filter.

3.5 The Adaptive Extended Kalman Filter

In the one step ahead prediction by the adaptive filter, N

predicted estimates X(k+lk)(i) are produced, each one conditioned on

a different vector (3.2.9). In general, the weighted estimate

N
X(k+lk) E X(k+llk) ( i ) W.(k) (3.3.1)

i=l

is closer to the true state vector than the individual conditioned

estimates where the weights Wi(k) are those which are computed at the

end of the kth iteration. By computing the Gain matrix (3.2.3) using

an H matrix linearized about(3.3.1) rather than N such Gain matrices

linearized about the individual estimates X(k+llk) i), a more accurate

value is obtained. Since only one H matrix (and one Gain matrix) is now

being used, the entire covariance analysis becomes the same for each

mean value and a single filter suffices for this portion of the algorithm.

This is how the conflicting requirements of the adaptive and Extended

Kalman filter algorithms are reconciled. In summary, Equations (3.2.2),

(3.2.3), and (3.2.4) describe the covariance portion of the Extended

Kalman filter provided linearization takes place about X(k+llk) as

defined by (3.3.1).

37



The state predict and state update equations are now given

with reference to the nonlinear measurements.

T, M hM(X)

T 2 - h2(X)

where hi, h2 are defined in (3.1) and (3.2), respectively and,

i(k+llk)(i) . i(kik)(i) + ru

The ith filter conditional measurement residual is defined as

1()kl S F kl kl lM1k (3.3.2)
L2 (k+l) LzT(k+l) - h2i.X(k+ljk)

where

z (k+l) and z2 (k+l) are the noisy measurements of T and 29

respectively, at time (k+l). N such conditional measurement residuals

are computed corresponding to the N column vectors given by (3.2.1).

Then the ith updated state estimate is computed as follows:

S(i)(k+llk+l) - i(i)(k+llk) - K(X(k+ljk)}![(i)(k+l)] (3.3.3)

for each value of i - 1, 2, ..., N.

IIn order to complete the adaptive Extended Kalman filter

i algorithm, the linearized H matrix is now developed. Referring to

Equation (3.2.7), H has the form

IT 1-~ 0 0 I, 0 10
H(k-l) LT 2 3 0 2 (3.3.4)

S (k+l1k)

Note that z is the relative vertical separation, i.e. in Figure

3.1.1. From (3.1) and (3.2) we get
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[ 0 D2 C
12

i (z - 2H01)

Dza- -- Dl 2]/C
1 2

(3.3.5)

3T3 
2

_T 2  (z + 2H02) z
2" D3 D_2_]/C

where

DI  (2 Z2 + 4H 012 _ 4H01Z)1/2

D2a 2 + 21/2

2 2 1/2D = + z + 4H02  + 4H z)
3 02 0

Note that Equations (3.3.5) are evaluated using the one step ahead

predicted states; implicit in this, too, is that the predicted values

for H01 and H02 are also calculated and used in (3.3.5). Equations

(3.2.2), (3.2.3), (3.2.4) and (3.3.1) - (3.3.3) constitute the

adaptive Extended Kalman filter algorithm.

A weighted estimate of the updated conditional estimates is

next formed using the weights given by (3.2.11). It should be pointed

cut tht because the measurements now form a vector, namely

K l F 1 (k+l) + v I(kl 1

2Z(k+1) + v I(k~l)

- ~V1, v, -.7-2 additive zero mean white Gaussian measurement noise,

the multivariate Gaussian distribution must be used to compute the
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I above weights. This distribution has the mean value vector

h 1(X(k+llk)M())

h (X(k+llk)M

and covariance matrix

jC(k+1) - [H{i(k+llk)IP(k+llk)H{i(k+lfk)}T + R(k+l)]

This completes the discussion of the Adaptive Extended Kalman filtering

algorithm. In the next section specific design values will be

discussed and the resulting filter performance evaluated.
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3.6 Specific Filter Designs and the Resulting Filter Performance
Using Synthetic Data

The numerical values used for submarine velocities, depths, etc.

in the remainder of this report should not be taken as being representa-

tive of actual values for modern submarines, but are used exclusively

for reference purposes.

The parameter selection process concerns itself with the

following parameter set

a , N, Vmax, a, Qu

where

a is the assumed drag coefficient

4 a is the standard deviation of the correlated processC

N is the number of levels (mean values)

V is the assumed maximum possible speed of the target

set to be tracked

a =lIT
c

where r is the correlation time constant of the correlated process,

0 PT
and Qu = i(u-u#j (+u-u~i) is the mismatch term in the covariance

calculation.

The set of parameter values is summarized below:

T - 10.0 secs

& - 0.05

S- 0.18
c 0

c - 0.03

N7

V m a24 ft/sec

a - 0.25
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I
(i)3 s -1.2, -0.8, -0.4, 0.0, 0.4, 0.8, 1.2

u usM: 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
z

0.01 0 0 0

0 0.06 0 0

u 0 0 0 0

0 0 0 0

The following initial conditions are used:

H 02 2000'

z 4 400'

w  - 6000'

With a water depth H of 6000', these initial conditions place

the Observer and Source at depths (below the water surface) of 1000' and

600', respectively, with the Source 400' above the Observer. These

depths are more realistic than those used before. Because of tempera-

ture gradients and a variety of other reasons, the velocity of sound

1. in water is not a constant but varies with position. In an attempt

1 to take this into account, the velocity is modeled as a Gaussian random

process with a mean value C - 4950 (ft/sec). This is the modeling

1 technique which is used in [ 8]. The above conditions, which provide

for a much more realistic environment in which to test the filter,

1" yield the following range of time delays:

1 1: 26 m.sec. - 11 m.sec.

T 951 m.sec. - 471 m.sec.

With additive measurement noise of 5 m.sec. standard deviation, the

SNZR for the T1 measurements gets lower as time progresses due to the
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decreasing value of r. This decrease in T (and to a lesser degree

T 2 ) is caused by the decrease in the difference between the lengths

of the direct and surface reflected paths as the separation of Observer

and Source increases. In addition, since these time delays are gen-

erated using a random velocity of sound in water, the SNR of T is

effectively decreased even further.

Figure 3.6.1 shows the relative positions of the Source and

Observer. Vs is the Source velocity with respec. to the fixed X axisf and V is the Observer velocity, also with respect to the fixed X axis.
0

In Figures 3.6.2 - 3.6.4, the Source has a horizontal velocity

V of 20 (ft/sec) and the Observer a horizontal velocity V of 4 (ft/
s 0

sec). This yields a 16 (ft/sec) relative horizontal velocity of the

Source with respect to the moving Observer at a time unknown to the

Observer the target makes a major speed change as shown in Figure

3.6.3. The percent error in radial position is generally well within

±3% in Figure 3.6.2. The radial velocity estimates in Figure 3.6.3

continue to oscillate, but with smaller excursions than with N - 3

levels. In Figure 3.6.4, the excursions in the z estimates are onso

the average in error by 50 feet.

It appears, therefore, that increasing the number of mean values

from 3 to 7 just about maintains the same filter performance in the

" face of reduced SNR on T1 and the modeling of the velocity of sound

in water as a random process to generate the sonar time delay data.

The oscillations in radial rate p are still present and a slight

decrease has occurred in the quality of the vertical separation estimate.
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% Error in p

5.950 a 0 1 - 5 m. sec.

5.02

4.08

3.15

2.22

1.2:

-0.50

-33 Time (Minutes) 15

Figure 3.6.2 Percent Error in Source Relative Radial Position
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I

Z (feet)

I Actual Source Relative Vertical Position: 400'

I 501

471

1 -441

400

352

323
3 a 5 m. sec.

23

204
0 Time (Minutes) 15

Figure 3.6.4 Estimate of Source Relative Vertical Position
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3.7 Conclusion

Depending on the horizontal distance separating the Observer

and Source, the ray paths in Figure 3.1.1 may undergo multiple reflec-

tions before arriving at the Source. By this is meant that the surface-

reflected wave may be reflected back to the ocean floor and then back

to the surface before arriving at the Observer. A similar situation

exists for the bottom-reflected wave. Another problem which the sonar

time delay tracker may have to contend with is the problem of inter-

mittently available time delays. For example, the analysis in this

chapter presupposes that the two time delays are available simulta-

neously. Under certain conditions, this fortuitous situation may not

occur and the time delays may be individually available only at random

times, or one or both of them may not be available at all for certain

periods.

Thus the sonar time delay tracker is susceptible to a variety

of debilitating influences. The decoupling of the bearing tracker from

the processing of the time delays, which the Adaptive Polar Kalman

filter developed in this chapter permits, enables bearing measurements

to be processed even if the sonar time delays develop poor quality

or are interrupted. With the rectangular filters, the processing of

the bearing measurements is coupled to the processing of the sonar time

delays, and any interruption of the latter brings the bearing estimation

to a halt as well. Thus filtering in polar coordinates not only reduces

the order of the measurement linearization matrix, but also localizes

to the p-z plane the deleterious effects of poor quality sonar time

delay measurement data.
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The decoupling of the bearing channel as a result of filtering

in polar coordinates has two important results: namely, that the order

of the linearized measurement matrix H is reduced by one and the

effects of poor or intermittently available sonar time delays are

confined to the p-z plane. The estimates of the Source radial velocity

become very poor under low SNR conditions on the sonar time delays.

Therefore a search for an itdependent method of estimating the Source

radial velocity is worthwhile. This method should function reliably

and accurately regardless of the quality of the sonar time delay

measurements. The remaining part of this report is devoted to

developing an independent method which precisely satisfies these

requirements.
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Chapter 4

PASSIVE TRACKING OF SOURCE RELATIVE RADIAL VELOCITY PROFILE USING
THE DOPPLER EFFECT AND KNOWN CONSTANT CENTER FREQUENCY

4.1 Introduction

It is shown at the end of Chapter 3 that passive tracking

using sonar time delays yields acceptable results only when these

measurements are characterized by high signal-to-noise ratios. How-

ever, even under such favorable conditions, oscillations occur in

the estimates of the Source relative radial velocity; these oscillations

increase as the SNR ratio decreases. This, in turn, causes the per-

cent error in the Source relative radial position to increase and also

leads to much poorer estimates of the Source relative vertical position.

While it is true that the performance of any filter will suffer under

adverse SNR conditions, the effect is particularly pronounced with

both the Extended and Adaptive Extended Kalman filters, because of

the approximate nature of these filters.

There exists another and to a considerable extent an indepen-

dent method of determining estimates of the Source radial velocity

(note that the term "relative" is dropped; from this point onward,

and unless stated otherwise, whenever Source position or velocity

is mentioned, it is implied that they are rilative to the Observer).

This method uses what is commonly known as the Doppler effect. The

next section serves as a brief introduction to the Doppler effect.

The remainder of this chapter is then devoted to using this
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effect (assuming the "center frequency" f is known) to passively track
0

the radial velocity profile of a maneuvering Source. The next chap-

te will address this problem assuming the center frequency is not

known, but rather a random process.

4.2 The Doppler Effect for Sound Waves

Consider Figure 4.2.1(a). In this figure the stationary sound

source A iS transmitting a sound wave of frequency f 0(also called the

"center freqv'ency"). Because of his motion, the frequency of the

sound heard by the listener B is not the center frequency f 0but some

other frequency f to be determined. Before proceeding further, it
t

should first be pointed out that r in Figure 4.2.1 refers to the

separation of the source and listener in three-dimensional space--the

spherical radius. For example, in (a) the listener might be a subma-

rine and the source a floating §onar buoy providing navigation inf or-

mation by means of the Doppler effect. Thus r need not be horizontal

as drawn. In addition, r is the component of the listener's velocity

vector acting along the radial direction r--the spherical radius

rate. With the meaning of r and r firmly established, refer again

to Figure 4 .2.1(a), where the listener is moving away from the

stationary source with a radial velocity . This radial velocity

imparts a shift (121

Af--f r/C (4.2.1)
0

to the center frequency, where C is the velocity of sound in the

surrounding medium. This frequency shift is then added to the center
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frequency and it is the sum of these two frequencies which the listener

hears

ft
ft Mf 0 +( -) f [I - i/C] (4.2.2)

Equation (4.2.1) implies that for a positive (negative) , the received

frequency f tin (4.2.2) is less (greater) than the center frequency f.

Now consider Figure 4.2.1(b) where the source is moving and

the listener is stationary. The exact expression for the shift in this

case is different from that given by (4.2.1). However, if the speed

of the source is small compared to the speed of sound in the surround-

ing medium, then the shift imparted to f0in case (b) simplifies to

that given in (4.2.1) (12]. This implies that f tin case (b) is also

given by (4.2.2).

Now the typical underwater scenario where both the Source and

Observer (Listener) are moving does not fall into either case (a) or

(b) in Figure 4.2.1. To determine the formulas for the Doppler shift

in this situation, Equation (20-11) in reference [12] states that for

a moving Observer and Source

v

t 0

f t f 0(1 4-

where "ithe upper signs correspond to the Source and Observer moving

along the line joining the two in the direction toward the other,

and the lower signs in the direction away from the other." These

two cases are now considered individually.
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Case I Source and Observer moving toward each other with speeds
vs and vo, respectively.

v

( +-) v v
f f(l + oft afo f a ) (a + A)
i 0 v 0 C C

(1 - -)
C

v
if -- << 1. Therefore

C

v v v +v
ft = fo (l + - ) f (1 + o C (4.2.3)

Let r be defined as the rate of increase in the distance r separating

the Observer and Source. Then since v and v are positive numbers

(speeds)

r- -(v + vs)

is the relative radial velocity of the Source with respect to the

moving Observer and is negative. Substituting this into (4.2.3)

ft z f (1 - /C) (4.2.4)
t 0

for r < 0.

Case II Source and Observer moving away from each other with speeds
v and v , respectively.5 0

v
(--) v v

t 0 V 0 C C(1 +..)
Cv

if << . Therefore

v v v +v
ft f (1 - -A )f ( O s) (4.2.5)
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Defining ras the rate of increase in r, then

( v 0+ v )

and r is, once again, the relative radial velocity of the Source with

respect to the moving Observer and is now positive. Substituting this

into ( 4.2.5)

ft=f (1-;nC) (4.2.6)

for r> 0.

Equations (4.2.4) and (4.2.6) are valid for r< 0 and r > 0,

respectively. However, these two equations are identical and the

conclusion is that either of these is the expression f or the received

frequency as measured at the moving Observer when r i~s interpreted as

the relative radial velocity of the moving Source with respect to the

moving Observer. Therefore the situations in Figure 4.2.1 which lead

to Equation (4.2.2) are both special cases of the more general case

involving motion by both the Observer and Source. In summary; the

Doppler shift Af is given by (4.2.1) where r is interpreted as the

relative radial velocity of the Source with respect to the moving

Observer and the received frequency measured at the Observer is

given by Equation (4.2.6). Having discussed the Doppler effect in

the presence of a moving Observer and Source, the use of this effect

in passive tracking is now discussed.

4.3 Velocity Tracking Using the Doppler Effect

Consider the Observer-Source situation shown in Figure 3.6.1.

The distance r is given by

2 21/2

r-(p s)
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and

(R + (zs (4.3.1)r so r

For the reasons cited in Chapter 3, there are only relatively short

periods when so~ 0. Also for large values of r,

zo
s o 0

and (4.3.2)

P
r

The approximations in (4.3.2) have good physical justifications. The

Source and Observer are, because of pressure buildup, very restricted

in how far below the ocean surface they can safely penetrate. This

restriction on vertical movement in turn places limitations on the

extent of their vertical separation, z so There is no such restriction,

however, on the horizontal distance separating them. Therefore, while

the vertical separation z is measured in, say, hundreds of feet,
-I so

the horizontal distance P is measured in miles or tens of miles.

In view of Equation (4.3.2), Equation (4.3.1) can be approximated as

-I r~p(4.3.3)

and

f p -
0 0 (4.3.4)

where C is the velocity of sound in water.

This simplification of Equation (4.3.1) to (4.3.3) has,

through Equation (4.3.4), shown that the Doppler shift is a linear

function of the radial rate p. Consequently the radial channel model

for the maneuvering Observer-Source dynamics developed in Chapter 2
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can now be used to passively track the Source radial velocity using

(4.3.4). This model is repeated below for convenience.

P °(A-T) us D

0 E F + (E-1) VCSB + wwt' 0 e- a T wt 0 001kLk

L Jk+l L .- Pj k L

Equation (4.3.4) shows that the radial velocity information is

contained in the Doppler shift. However, the measured frequency f
'k+.

is not the shift, but rather the sum of the shift, center frequency

f and measurement noise:
0

fmk+1  0 +fk+l vk+l (4.3.5)

where

Afk+l 0) *k+1 (4.3.6)

If the known center frequency f appearing in (4.3.5) is looked upon
0

as a fixed measurement bias added onto the shift Afk+l, then the bias

can be directly removed since f is known in this chapter. Therefore.
0

by prefiltering the measured frequency f the resulting prefiltered
'k+l

measurement Afk+l + vk+l
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is a linear function of the state variable p as given by (4.3.6).

Using the state vector

-f P
Zk+l m~k+l Vk+1 [0 P L J + Vk+l

sp k+l

Zk+l Xk+l + Vk+l (4.3.7)

and the adaptive Kalman filter algorithm can be applied to these noisy

measurements (4.3.7) using the earlier parameter values of Chapter 3.

Consider now Figure 4.3.1 where the Source and Observer are

moving horizontally, the latter at a constant velocity Vo - 2 ft/sec.

The Source makes several abrupt changes in its velocity as shown by the

solid line in Figure 4.3.2. The dotted line in this figure gives the

* weighted estimate produced by the adaptive Kalman filter using the

noisy frequency measurements given by (4.3.5). This weighted estimate

is seen to closely track the abruptly changing velocity profile of

the Source with relatively small lag time. These good velocity

estimates provide a reassuring test of the accuracy of the state

equation for p in compensating for Observer motion. To appreciate

this point, first note that 0 is the relative radial velocity of the

Source with respect to the moving Observer. Consequently, any sig-

nificant error in compensating for the component of the Observer's

own velocity acting in the radial direction will ultimately result

in a bias on the estimate of the Source radial velocity. This bias

is clearly absent in Figure 4.3.2.
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The trajectory in Figure 4.3.2 also provides a check on the

"integrating effect" of the state model in the following manner. A

very good initial estimate of the Source radial position is assumed at

t -0 in Figure 4.3.3. Then the state equation for p kl 1 "integrates"*

the combined effect of the Source radial velocity estimate and the Ob-

server radial velocity to arrive at the Source radial position estimate

p at each time step. The percent error in Source radial position at each

step is then calculated and the results are plotted in Figure 4.3.3. It

is seen that over a period of 50 minutes the percent error in Source

radial position never exceeds t2%. These results attest to the accuracy

of the state equation for p, particularly in its compensation for Ob-

server motion.

4.4 Conclusion

The tracking of a maneuvering Source velocity profile using the

Doppler effect and known center frequency f is a relatively straight-
0

forward filtering problem in polar coordinates. The adaptive polar

filter developed in Chapter 2 performs well in responding to abrupt

changes in Source radial velocity. Assuming a good initial estimate of

Source radial position, the adaptive filter "integrates out'; the velocity

estimates to yield good position estimates. These radial position esti-

mates remain within ±2% of the true radial position in the presence of

several velocity changes by the Source. These results indirectly attest

to the accuracy of the linearized polar state variable model for the

maneuvering Observer-Source scenario, particularly in its compensation

for Observer velocity.
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Chapter 5

PASSIVE TRACKING OF SOURCE RADIAL VELOCITY USING THE DOPPLER EFFECT
IN THE PRESENCE OF A RANDOMLY VARYING CENTER FREQUENCY

5.1 Introduction

In Chapter 4, the Doppler effect is used to passively track the

Source radial velocity assuming the center frequency f is known. Typi-
0

cally, a submarine emits a broad sound spectrum having several discrete

line spectra. These line spectra are often generated by machinery on

board the Source. As previously discussed any of these frequencies can

serve as the center frequency f 0emitted by the Source. However, under

realistic tactical situations, this center frequency f 0is either unknown

or a slowly varying random process. From previous work we know that the

Doppler information is contained in the 4h-&5t Af. Unfortunately it is not

the shift, but rather the sum of the shift and center frequency which is

measured by the Observer, as indicated in Chapter 4. Therefore the

measvred frequency f mis virtually useless for estimating the Source

radial velocity unless the center frequency is known or estimated. The

received frequency f t(ignoring measurement noise) as measured by the

Observer is given by

0 0

where the parameters f,9 p and C have been described in detail in the

previous chapter. Since f 0is unknown, then for any given value forft

there exists an infinity of possible combinations of values for f 0and Af

which sum together to give f t Any algorithm, therefore, designed to
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process ft must be cognizant of this fact and take steps to select the

correct pair of values. Another important point to note is that in order

to estimate fo0 it must be defined as a state variable. The full impli-

cation of this can be realized by referring to

fp

C

Thiz equation shows that the shift Af now invoives the product oj the

6tate variablu p and f and conequently a nonlinext estimation prioblem

muzt be 5otved in order to proces the DoppleA meauwement. In short, the

ssumption that f is unknown or random has the following two results:0

i. It increases the number of state variables
(and hence the order of the system) by one and

2. it increases the complexity of the problem by
transforming the linear estimation problem of
Chapter 4 into a nonlinear estimation problem
involving the product of state variables.

It was stated in Section 2.2 that "the Extended Kalman filter is

usually the first filter to be used when confronted with either system or

measurement nonlinearities." Rather than using the Extended Kalman filter,

an entirely different approach is used. This new approach consists of

performing a "transformation" on the problem which shifts the nonlinearity

in such a manner that it can be "disposed of" in a relatively easy manner.

Then a "pseudo-linear" filter is developed to process the nonlinear measure-

ments (5.1.1), using essentially basic linear filtering theory. The details

will become clear as the development proceeds.

5.2 State Variable Model for Doppler Measurements of a Random Center
Frequency

The received frequency ftK+I neglecting noise at time tK+I , and
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random center frequency fl becomes0K+l

_ft

fkk+l
f ~ f0 k+ C Pk (5.2.1)

Now, by using equation (2.3.12) for Range rate (Pk+l) we can rewrite (5.2.1)

when the substitution

=ft

k is made.

fyok/C

After making several cancellations

-ft
0 0k

f f + (k+l)E (fk - fo ) +( + ) [Fw + ... ]tk+I  °k+l 
sp k

Letting the center frequency at time (k+l)T be

f =f + 6f'0k+l ok  ok

where 6f' is the purely random variation which f' undergoes to produce0ok  0ok

f' Note that 6of' is entirely unrelated to the Doppler effect.0k+l 0kf I
0 k+l

Now for a small variance on 6f' ,the ratio V on the average is near

unity.

Thus by making this approximation in (5.2.2), and bringing f over to0
k+l

the left side then defining

Afk f - f,k+l - tk+l k+l

Afk - ,Sktk

we get for the first Doppler state equation

-f I

k wok wE k + F + Au + (E-l) (Vo COS'do)k+GWs6fk ~~P Pk pf + -k-) p p

(5.2.3)L 65



, _ 0k+lNote that the approximation (-) was substituted for ( ) on the
C

right side in (5.2.3). In order to make the problem tractable, the

assumption that f' is Gaussian with a mean value f is made. Let f' be
o0 0

described by the following autocorrelation function

2 2 -af I1 (5.2.4)
Rf,(T) = fo + of e 0

0 0

where

f = E{fo(t)i
00

By converting to discrete time kT, (k+l)T, ... the random process

W (tk) becomes
f k+l

0

-af T -af T
W =e +- (l-e o) wf

k+l fo (5.2.5)

andkletting 1-af 0

and letting j 1 (1 - e o ) as before
af

0

equation 5.2.5 becomes

-af 
Tf' f + e fo w ' o + J wf

0k+ o (5.2.6)

6 k
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The expression (5.2.6) is not yet in proper state variable form

because of the presence of the unknown mean value fo" This mean value can

be eliminated by subtracting
f0 (fe; Wfo k

k

and substituting this expression into (5.2.6) for fo yielding

f' =f' w + e fo0 w + J wf
0k+l 0k fk k k

Collecting like terms, the following discrete time state equation for

the randomly varying center frequency f' becomes
0

-af Tf, =f +e o -l ' +Jwff'f + (e 0 _ ) Wfo k  J W

fk+l 0k f f (5.2.7)

The state equations (5.2.3), (5.2.5) and (5.2.7) collectively form the

Doppler frequency state variable model (5.2.8) with measurement model

given by (5.2.9), and are summarized on the following page.

The following observations are now in order. The auto-

correlation function (5.2.4) was chosen with the following properties in

mind: 1. It represents a random process having a
mean value f

0

2. The exponential correlation is versatile
in that it provides a tractable yet real-
istic model for actual random phenomena.

In addition, the parameter af can be adjusted
0

to model processes having bandwidths varying
from wide to very narrow.

The added complexity of a random center frequency f' has in-
0

creased the order of the state variable model by one. Note that the state

equation for f' (second row in (5.2.8) has the term J in the T matrix.
0

This term provides a means of setting a lower bound on the magnitude of

the error covariance for the conditional estimate f (i) No such term
0

exists in the unknown constant center frequency case. This is an added
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"benefit" of the random center frequency assumption.

Like the previous Doppler frequency models, (5.2.8) is not a

linear state variable model because of the presence of the state variable

' in the T matrix. However, since f' is a random process, initialization
0 0

using the first noisy frequency measurement can be applied to (5.2.8) to

make it a pseudo-linear time-varying state variable model.

The presence of w' in (5.2.8) indicates that this Doppler
s P

frequency state model also requires interaction with the reduccd order

radial channel model given in Chapter 2 by

(i) (1) (i)

EF + [ (E1) [ ]+ + WS

W1' 0 e-a T  w1 0s  Vo CoSs i k

P k+l - P k ' 'k-

This will allow w' (tk) to be estimated and then used in the Doppler filter

dynamics matrix 0 equation (5.2.8). In addition, (e fo - 1) and

1 ,-afT
(1 - o ) appearing in the Doppler frequency equation (5.2.7) are

afo

functions only of the correlation time constant

1
Tf a

0

in the autocorrelation function.

5.3 Performance Anlysis of the Doppler Frequency State Variable Model

for the Randomly Varying Center Frequency Case

Figure (5.3.1) shows the structure of the filter to be analyzed

in this chapter. Each block consists of a Kalman Filter, either Doppler

frequency to the left, or polar range estimator to the right. The inputs

are the N discrete levels Usi and each filter is now separately computed

p

since the state matrices are functions of Mi. Thus N sets of frequency and
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radial channel estimates are produced, each set being conditioned on a
(i)

different mean value usp , i - 1, 2, ..., N. The reason why this

particular filter structure is chosen will become clear later when the

block labeled "Adaptive Estimator" is discussed. For the present the

operation of the filter without the adaptive portion is examined. This

will serve to gain an appreciation for the filter's operating character-

istics which will then set the framework for developing the adaptive

section.

Figure (5.3.2) is a block diagram of the model used to generate

the noisy frequency measurement data. The quantity r appearing there is

the Course spherical radius rate and is essentially a random process having

an unknown distribution. This rate then multiplies the random center

frequency f' and this product is divided by the velocity of sound in water.
0

In the first series of results to be discussed below, this velocity is

assumed to be a constant C (switch open in Figure (5.3.2). The switch will

then be closed for the later results when the velocity of sound in water is

modeled as a white Gaussian random process having a mean value C. The zero

mean white Gaussian curves on the extreme left and right of the figure

represent the distributions of wfok and vk+l in Equations (5.2.5) and (5.2.9),

respectively. Thus the noisy measurement f in Figure (5.3.2) is amk+l
relatively complex combination of products, quotients and sums of random

processes, most of whose distributions (f' , Af, f ) are unknown.

0 t

The following results are obtained using the scenario in Figure

(3.6.1) whereby the observer trails the source with velocity

V - 2 ft/sec, and V = 20 ft/sec.0 5

The filter parameters and mean values are given in Chapter 3. The following

additional parameters have the indicated values:
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0 0.3 Hertz

Tf- 17 seconds

0

f - 500 Hertz (mean value of Random Center Frequency f')
0 0

C -4950 ft/sec

Frequency measurement noise standard deviation is the same as before.

This latter set of values is selected to produce a random center

frequency having significant excursions about the mean value of 500 Hertz;

the correlation tim constant being less than two sampling intervals ensures

that the random variation in frequency is quite rapid.

The Source velocity of 20 ft/sec corresponds to a Source control

input

us ci = . - (0.05)(20) = 1.0

This Source input lies midway between the sixth and seventh filter mean

values u ()=0.8 and u ()=1.2, respectively.
p P

sixt ~(6)
Figure (5.3.3) shows the seventh sift )U(f- and fifth

0 0I

virtual center frequencies (VCF) versus the actual random center

frequency f'. The remaining four VCFs, which lie progressively further
0

(5)below f 0 in the figure, are not shown for reasons of clarity. Note how

each VCF closely follows the random variations of fV . Throughout the entire
0

time period of 18 minutes, the actual center frequency is generally bracketed

midway between the seventh and sixth VCFs. This is particularly satisfying

since the Source input is likewise bracketed between the sixth and seventh

mean values.

When either the Observer or Source changes its radial velocity, an

immediate jump occurs in the measured frequency f . Consequently it is im-
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portant that the filter be able to discriminate bet ,een a jump in the

measured frequency caused by an Observer maneuver on the one hand and a

Source maneuver on the other. To investigate this, the Observer speed Vo

is increased from 2 ft/sec to 8 ft/sec beginning at t = 7.5 minutes. First

note that since this is an Observer maneuver only, the Source input has not

changed and continues to be bracketed between the two mean values as before.

From Figure (5.3.3) this Observer maneuver ZA not reflected in the

estimates and the actual center frequency continues to be bracketed between

the sixth and seventh VCFs as before. This is to be expected as this shows

that the filter recognized the jump in measured frequency as having been

caused by an Observer maneuver.

Consider now Figure (5.3.4) which shows the three virtual Doppler

shifts Af(5), Af(6 ) and f( 7 ) versus the actual Doppler shift. Here, the
actual shift is bracketed between and f(7) as required by

(7) (6)
u < u < u ( Note that the Observer maneuver Z6 reflected in
Sp Sp Sp
the virtual Doppler shifts. To understand why this is necessary, first note

that a sudden change in the Observer velocity V causes a sudden change in
0

the Source relative radial velocity 6. This sudden change in in turn

causes a sudden change in the actual Doppler shift Atf. However, since the

Source input has not changed, the virtual shifts (VS) must change in such a

way that Af remains bracketed midway between &f(6) and

Figures (5.3.3) and (5.3.4) together illustrate how the filter

exploits its degree of freedom by satisfying the required inequalities. For

example, note how the VCFs in Figure (5.3.3) satisfy

< j,(6) , ,7
0 0 0

while the VS's in Figure (5.3.4) satisfy

f(5) jf(6) jf(7)
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The actual Source radial velocity p in Figure (5.3.5) remains

^(6) (6) :(7)
bracketed between the virtual radial velocities (VRV) p and p and p

in the presence of the Observer maneuver. Here again, since the Source

input has not changed, the filter responds by changing the VRVs to maintain

the actual value midway between the sixth and seventh VRVs.

The behavior of this filter in the presence of a Source maneuver

is examined in the next three figures. With the same set of parameters and

initial conditions as in the preceding figures, the Source velocity Vs

changes from 20 to 12 ft/sec beginning at t = 7.5 minutes. The new Source

(5) (6)
input us = 0.6 is midway between us  ands

P P P
The response to this Source maneuver is radically different from

that for the Observer maneuver. Consider for example Figure (5.3.6) where

we see that after the Source maneuver at t - 7.5 minutes, the VCFs all

shift upward by an amount sufficient to have the actual center frequency

f' bracketed midway between the fifth and sixth VCFs. The response time of
0

tb, tilter is quite good as this upward shift by the estimates is immedi-

- tely perceptible at the initiation of the maneuver. Note how the VCFs

continue to follow the random variations of f' both before and after the
0

maneuver.

In Figure (5.3.7) the actual shift which is initially bracketed

between the sixth and seventh VS's before the maneuver ends up midway

between the fifth and sixth VS's after the maneuver. This same situation

applies to the radial velocity P in Figure (5.3.8). Note how the degree

of freedom continues to be exploited by the filter in Figures (5.3.6) and

(5.3.7).

To summarize, the filter bank in Figure (5.3.1) is shown to be

capable of tracking the Doppler shift, random center frequency and radial

velocity fluctuations in the presence of either an Observer or a Source

78



0
cis <o 4o

4 = w

- 00
.c. -

- ON

4- - 79



cc

0rA

~ J.J %

,-~C3

IT . 0 ~ .i ~ .

en t4
-4 eq

80,

.......



Cc C

'0 4.1 U

- '-4

0>

-C

4.

oId-

'5

CC.

0

j 81



maneuver. It has been determined that the filter bank can discriminate

between a sudden change in received frequency caused by a sudden maneuver

on the part of either the Source or Observer. For an Observer maneuver,

the estimates adjust themselves to maintain the previously existing relative

positions of the actual values versus the estimated values. For a Source

maneuver, the estimates are adjusted to reflect the new position of the

Source input with respect to the filter mean values.

The preceding results look at the filter's behavior from the point

of view of the individual conditional estimates. Of course, in reality one

does not know between which of the levels the actual Source input lies and

consequently an adaptive technique must be developed before the filter can

hope to be of any practical utility. However, in order to develop this

adaptive technique, the mean value of the Source center frequently must

first be known. The following section discusses how to obtain this in-

formation.

5.4 Determination of the Mean Value of the Source Randomly Varying Center
Center Frequency

The determination of the Source center frequency mean value is of

crucial importance to the problem at hand. Since the VCFs are separated by

less than two Hertz, it is imperative that the method chosen yield a very

accurate value for f
0

The technique consists of using the Adaptive Extended Polar filter

developed in Chapter 3. If the weighted estimate p produced by this adapt-

ive state estimator is averaged to yield an average value for the steady

state radial velocity, then this information can be used to achieve a very

accurate numerical value for E{f'}. To see how this works, consider00 C a



where p is the averaged steady state radial velocity. Substituting

L

for p and solving for f we get
0

f- f
f 0 m (5.4.1)

where it has been assumed in (5.4.1) that v 0 where v is the average of

the zero mean frequency measurement noise. This method of obtaining f is
0

very robust, and is illustrated in the next section.

5.5 The Adaptive Doppler Frequency-Radial Channel Tracking Filter for
the Randomly Varying Center Frequency Case

With a method to determine a numerical value f for the Source0

center frequency mean value now available, the last remaining problem is

the development of the block labeled Adaptive Estimator in Figure (5.3.1)

The key to this new adaptive technique is the implicit assumption that

the mean value o6 the Souce random centeA frequency does not change with

time, o very slowly oveA tong periods of time.

The following analysis presupposes that this mean value has already

been determined by the method presented in Section (5.4.4). Consider the

set of conditional estimates appearing at the output of each Doppler frequency

Kalman filter in Figure (5.3.1). If each of the virtual center frequencies

f, (i), i = 1, 2, ... , N
o k

is averaged using a sliding window of length L, then the following set of

average VCFs is obtained:

Lf (i) - I ( i)
S = ' i = 1, 2, ... , N (5.5.1)

k  Lyl °k-yl'
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where k is the current iteration of the filter bank and L is the sliding

window length. Now because each of these VCFs faithfully reproduces the

fluctuations of V during any averaging period, the average value of f'
0 0

is bracketed between some pair of (5.5.1). This conclusion is simply a

necessary result of the inequalities if
Ci) (i)

u < u < u hrup Up Up then

(j) < ( ) (5.5.2)
f k  0 f k

for some set of consecutive integers (i, j) drawn from the set (, 2, ..., N).

With the numerical value f for the Source mean value f in
0 0

hand, it is a relatively easy matter to determine the pair (i, J) after

each filter iteration. This information is then used to form the fol-

lowing weighted estimates of the Source center frequency, Doppler shift

and Source radial velocity:

0 k ( -k f 0 + f ik o f 0 k

t _ ( 3.5.3)

0k Cf i) - f Qj)

Cf(i -f ) ji f ~C)

0 0

k k

kf 0 _ k 0" k. .K

C) W) - (I)Q

(k f +i 0 ( f 0
i) - )
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N o e t h t Q' ( )  f , (M
Note that are the intantaneouz estimates producedk 

(i)
by the filter in Figure (5.3.1) as distinct from the averaged estimates f

etc. Figure (5.5.1) gives a block diagram of this Adaptive Estimator.

To gain a further appreciation of how the Estimator works, let the Source

(j) Miinput initially be bracketed midway between u and u ( Next let thes s

p Q) p
Source input switch to a value very close to u s After an initial trans-

P
ient, the VCF f' (J ) . After an initial transient, the VCF f' Q ) approaches0ok  ok

in value the actual Source center frequency f' . T i Zn tun means that the

ave,%aed VCF f 0 app4oaches the vatue.. 0

which implies that
- (j)

f 0

and
Mi Q () - foki

k  - k - f0

The result is that the coefficient of f in the numerator of
ok

(5.5.3) approaches zero, and the denominator approaches in value the co-

efficient of f' (J ) in the numerator.0ok

Therefore as

u uQ)
s sp p

then the weighted estimate

f 4. f I ( ) -,0ok  0ok  0ok

This same conclusion applies to the weighted shift and radial velocity

estimates given in (5.5.4) and (5.5.5), respectively. Note that the Source

input u s was switched close to a mean value merely for illustrative purposes.
p

The Source input can in reality switch anywhere within its continuum of

possible values and the Adaptive Estimator will respond appropriately.
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The results in the next series of figures are obtained using the

scenario in Chapter 3. The quantities appearing have the values

z = 400 feet vertical separation

V = 4 ft/sec~o

Vs - 20 ft/sec

u M 1.0s
p

The filter parameters are the same as section 3.6 and the following additional

parameters have the indicated values:

Of M 0.1 Hertz
0

Tf M 17 secs
0

f = 500 Hertz
0

C = white Gaussian random process with a mean
value 4950 ft/sec

Frequency measurement noise standard deviation is the same as before.

The switch in Figure (5.3.2) is closed in order to generate the

noisy frequency measurements using a random velocity of sound in water.

Therefore this situation involving a non-zero vertical separation between the

Observer and Source is a much more realistic scenario which when coupled with

the random center frequency and random velocity of sound in water, collective-

ly provide a realistic environment in which to test the Adaptive Estimator.

In Figure (5.5.3) the seventh, sixth and fifth VCFs are shown together

with the weighted estimate produced by the Adaptive Estimator. Beginning at

t = 13.5 minutes, the Source velocity changes to V5 = 14 ft/sec corresponding

to u - (0.05)(14) - 0.71 sp
which is slightly less than u (6) With the Source input initially midway

(6) (7) p
between u and us  , the actual center frequency f' is seen to be

b p p 0

bracketed midway between the sixth and seventh VCFs. At t - 13.5 minutes, the

VCFs respond and by t - 15 minutes the sixth VCF has shifted up close to f'
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To understand the weighted estimate plot, first remember that the

mean value of the Source center frequency must first be determined as in

Section 5.4. This process is taking place in a brief time interval pre-

ceding t - 9 minutes (but not lasting the full 9 minutes). Consequently

during this period the weighted estimate is initialized to the first measure-

ment, like all the initial f' estimates. The quentities in Equation (5.4.1)
0

have the following computed average values:

m 498.396 Hertzm

= 16.134 ft/sec (obtained from averaging
the Augmented Extended Polar filter
estimate)

Substituting these values into (5.4.1), the numerical value

f- 500.0254 Hertz

is computed for f . Note that while there is a slight error in P = 16.134--0

the actual Source relative radial velocity is 16 ft/sec-- the computed mean

value of f = 500.0254 Hertz is nevertheless extremely accurate. To see how
0

robust this method is, consider for example if the average radial velocity

estimate produced by the filter of Chapter 3 were 15.0 instead of 16.134;

the computed mean value in this case is

f! - 499.911
0

which is still quite good. It should be borne in mind that the sonar time

delay measurements used by the Adaptive Extended Polar Filter to produce

are also generated using a random velocity of sound in water.

In Figure (5.5.3), the Adaptive Estimator (7.5.3) is activated at

t - 9 minutes with the learning period completed. The weighted estimate '
0ok

rises immediately to the actual center frequency and thereafter tracks V
0

very closely, even in the presence of the Source maneuver at t - 13.5 minutes.

Note how the weighted estimate is almost identical in value to the actual f'

0
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after the Source maneuver is completed.

In Figure (5.5.4), the Adaptive Estimator likewise prodices a

weighted estimate of the Doppler shift which is practically identical in

value to the actual Doppler shift. The response time of this weighted

estimate to the Source maneuver at t - 13.5 is relatively brief with only

a minimum transient in the weighted estimate before learning the new Doppler

shift.

The radial velocity weighted estimate p in Figure (5.5.5) displays

all the desirable qualities of the two preceding figures. The response time

to the Source maneuver is excellent. Note how p both before and after the

maneuver is extremely close to the true radial velocity. The vertical scale

in each figure provides a convenient gauge of the accuracy of the weighted

estimates.

The Adaptive Estimator in Figure (5.5.1) can also provide weighted

estimates both of the Source control input u and Source correlated acceler-s
p

ation term w' using the same weighting technique applied to the other state
P-,' p

variables. For example, in the above figures the actual Source control inputs

before and after the maneuver are 1.0 and 0.7 respectively. The Adaptive

Estimator produces corresponding weighted estimates having the following range

of values:

Before: 0.988 - 1.07

After: 0.64 - 0.81

Note that these radial velocity, control input and correlated acceleration

weighted estimates would be of considerable utility in a combined sonar time

delay-Doppler frequency tracking filter. Such a combination would exploit

the best advantages of both filter types. For example, with the Doppler-radial

channel filter providing the above weighted estimates, the order of the time

delay tracker could be reduced by two from that in Chapter 3. This reduction
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in order is possible because the two state variables p, w; appearing in

(3.2.1) are now estimated by the Doppler tracker. Thus the state vector for

the time delay tracker would now consist of the following four state

variables:

[p z w1' (5.5.6)
z

The high quality estimates of pw' and u5 produced by the Doppler filter
5
p P

.9 should in turn improve the performance of the time delay tracker. In

addition, by embedding the adaptive feature of the combined filter in the

Doppler section, the need for the semi-Markov-based weights would be elimin-

ated. This in turn means that the oscillations in the weighted estimates

experienced in Chapter 3 and which are caused by the weights switching back

and forth would also be eliminated. Note that the simplified time delay

tracker involves much more than a mere reduction in the size of the state

vector. It also implies an elimination of all but one of the mean values

4 in each channel. For example, the Source input would not be modeled as a

Aingte Gaussian curve in each of the p and Z channels. The mean values of

these curves would be the Doppler provided weighted estimate of the Source

input and zero, respectively. Thus the augmented approach using several

levels could also be dispensed with.

Before concluding this section, the following additional comments

need to be made. If it is known that the Source center frequency is a single

constant tone, the modeling of this center frequency as a narrowband process

is nevertheless advised in order to prevent the error covariance and Gains

from becoming too small and causing divergence. The constant tone could be

accurately modeled as a highly correlated random process by selecting an

appropriately large (small) value for T (af )
0 0
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In obtaining the results discussed in this seccion, the pre-

filtered measurement for the ith Radial Channel Kalman Filter in Figure

(5.3.1) is obtained by subtracting the ith VCF from the received noisy fre-

quency measurement.

Prefiltered Measirements: (f - f, ( i - 1, 2, ..., N
'k+1 0k+l

An interesting variation on this would be to use the ith virtual Doppler

shift as the prefiltered measurement

Prefiltered Measurements: Af(i) i i, 2, ..., N

This conceivably might improve the filter performance under high measure-

ment noise conditions.

When the learning period is over and fo has been calculated, a

considerable savings in computation can be achieved by cycling only the two

(i, j) filters where the set (i, J) (was previously defined). When a

maneuver occurs, the entire bank could be activated until the new set (i, J)

has been determined, at which point (N-2) filters could again be deactivated.

Note that detecting Source maneuvers for activating the filter bank is a

relatively simple matter because a Source maneuver is immediately heralded

by a sudden shift in the measured frequency f n as well as in the estimates

produced by the two activated filters.

5.6 Conclusion

This chapter presents possible the first attempt to solve the

problem of passively tracking the radial velocity of a maneuvering Source

using the Doppler effect in the presence of a randomly varying center fre-

quency.

This problem in general is highly nonlinear, particularly if one

is not careful in selecting the polar coordinate system in which to filter.
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An Adaptive Estimator based on the mean values of the virtual center fre-

quencies was developed. This Adaptive Estimator was rigorously tested under

realistic environmental conditions which include a rapidly varying center

frequency and velocity of sound in water modeled as a white Gaussian random

process. The structure of this Adaptive Estimator is made possible by con-

ditioning both the Doppler filter bank and radial channel filter bank

estimates on the individual mean values u5 (i), i - 1, 2, ... , N.

It is believed that the adaptive filter developed in this chapter

represents the first significant attempt to deal with the random center

frequency case in all of its complexities. The results obtained for a

scenario involving a maneuvering Source are very encouraging and it is felt

that the filter merits further study. One feature worth looking at is vary-

ing the window length in the Adaptive Estimator. The window length used here

is L = 8, but a shorter window length might yield a still faster response.

Of course, a shorter window length would also compound the oscillation pro-

blem encountered for large of , so some tradeoff is called for. These small
0

oscillations could conceivably be eliminated by averaging the output of the

Adaptive Estimator using a window having a length equal to a few correlation

time constants Tff
0

Another avenue of exploration is to see if some connection exists

between the mean value of the center frequency and the Source dynamics. If

such a relationship actually exists in practice, then proper modeling dictates

that at least an approximate relationship be incorporated into the Ailter.

Note that in this case the degree of freedom is no longer at the disposal of

each filter, and consequently the semi-Markov weights can be used to compute

* the weighted estimates.
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The characterwitics of a combined Doppler frqec-snrtm

delay tracking filter are investigated in the next chapter.
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Chapter 6

THE INTEGRATED ADAPTIVE DOPPLER FREQUENCY-REDUCED
ORDER SONAR TIME DELAY TRACKING FILTER

6.1 Introduction

In Chapter 3 the Adaptive Extended Polar Kalman Filter is de-

veloped to process sonar time delays. This filter suffers from large

oscillations in the radial velocity estimates even under high signal-

to-noise ratios. These oscillations prompted a search for an indepen-

dent method to estimate the Source radial velocity, culminating in the

Adaptive Doppler frequency tracking filter just presented. Since the

Doppler measurements contain no information on the Source radial

position, the Adaptive filter in Chapter 5 can provide estimates only

of the Source radial velocity. Therefore, a hybrid filter formed by

integrating the Adaptive Doppler and sonar time delay tracking filters

offers the chance to exploit the best features of both filter types.

Thus, for example, the good radial velocity estimates produced by the

Adaptive Doppler filter can be used by the sonar time delay filter to

produce improved estimates of both the Source radial position and

Source vertical separation. To combine the two estimators the standard

N level Adaptive time delay filter is initially run. Then p is smoothed,

and used to compute f in the Doppler filter. Once this period ofo

initialization is over the standard N level filter is replaced by the

reduced order state variable model where now N - 1 and u is available.s P

The time delay filter is derived in the next section.
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6.2 State Variable Model for the Reduced Order Sonar Time Delay
Tracking Filter

The Adaptive Doppler tracking filter developed in Chapter 5 provides

estimates of the following quantities from the noisy frequency measure-

ments f:m

(6.2.1)
W;and us s
p P

Therefore the reduced order state variable vector for the sonar time

delay tracker previously given is repeated here for convenience.

[ p z W , T' I
t zso ~so s5

Returning to the state model (3.2.1) for the time delay tracking fil-

ter, the following state equations are obtained (the subscript so, on

z is dropped for convenience):
0

++ Cu + (A-T)(V Cos ) + Dw (6.2.2)
Pk+l k + k + B k s s

iZk +A + Bw' + Cu + )A-T) z + Dw

Zk+l k s s Z 0 k s (6.2.3)

Zk+l = Ezk + Fw' + Au + (E-i) z (6.2.4)s s ok  s 62z
Zk zk k

W' -e-a w + J w
S zk+l szk szk (6.2.5)

Since the quantities appearing in (6.2.1) are estimated by the Doppler

tracking filter, they can be considered as "deterministic inputs" for

9
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the reduced order sonar time delay filter. Combining these quantities

with the deterministic inputs of (3.2.1) the following expanded deter-

ministic input vector is obtained:

p

s
P

p

V 0Coss s (6.2.6)

uSz

Using this expanded input vector, the state variable model ('6.2.7) (next page)

emerges from the state equations (6.2.2) - (6.2.5). The corresponding

linearized measurement matrix H is given in Equation 6.2.8).

DT aT1 1 a

apso

H so(6.2.8)

2  aT2

30 3z
so

where the partial derivatives

aP ' ".. " 3Z5azso

are defined in Equations (3.3.5).
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Note that in the vector (6.2.6), u a is no longer one of the

Mi p
preselected mean values u5  , £ 1, 2, ... , N but rather is the

p
weighted estimate of the Source input produced by the Adaptive Doppler

tracking filter. In addition, and for the reasons given in Section 3.2,

the input u a has the constant value
z

z

Thus neither the vector (6.2.6) not the state model (6.2.7) is condi-

tioned on i, and consequently only a 4ingte Extended Kalman filter rather

than a bank of N such filters need be executed to process the noisy time

*delay measurements zT1and z~ T2 after the initialization or learning

period is over.

6.3 Performance Analysis of the Integrated Adaptive Doppler Frequency-

Reduced Order Sonar Time Delay Tracking Filter

Figure 6.3.1 gives a block diagram of the integrated Adaptive

Doppler frequency-reduced order sonar time delay tracking filter. In

this figure, the weighted estimates (6.2.1) produced by the Adaptive

Doppler filter are fed to the reduced order sonar time delay filter

where they are used in processing the noisy time delay measurements

zand z~
The results presented in the remainder of this chapter consist

of side by side comparisons between the integrated Adaptive Doppler fre-

quency-reduced order sonar time delay filter (hereafter referred to asI

* the hybrid filter) and the pure time delay Adaptive Extended Polar filter

developed in Chapter 3. These results take the form of a series of graphs,

each graph containing superimposed plots of the correcponding estimatesI

produced by the two different filters. Thus, a very effective comparison

can be made.
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Figures 6.3.2 - 6.3.4 are obtained using the filter parameters

of Chapter 3, z., = 400 feet, Vo = 4 ft/sec, Vs = 20 ft/sec, bc - 3 ft/sec

u 1.0, b = .lhz, Tf = 17 sec and fo = 500 hz. In addition, the
4s fof0

random velocity of sound in water is used to generate both the noisy

frequency and time delay measurement data. It should also be pointed out

that the time t = 0 in these figures corresponds to the instant when the

learning period of the Adaptive Doppler frequency tracking filter has

just been completed.

In Figure 6.3.2 the percent error in Source radial position p

produced by the pure time delay filter is larger by several orders of

magnitude than that produced by the hybrid filter. Indeed, whereas the

hybrid filter's errors are well within ±1% of the true value, the errors

produced by the other filter are larger than 4% for values of t > 15

minutes.

In Figure 6.3.3 the estimates of the Source radial velocity pro-

duced by the hybrid filter are far superior to those produced by the

pure time delay filter. While the hybrid estimates are generally within

±1.5 ft/sec of the actual value (16 ft/sec), the other filter's estimates

are in error by as much as ±5 ft/sec. Note that with the adaptive fea-

ture embedded in the Doppler tracker, the hybrid filter estimates are

much smoother than the wildly oscillating estimates of the pure time

delay tracker, which are caused by the switching of the semi-Markov

weights.

The superior performance of the hybrid filter is again evident

in Figure 6.3.4 where its estimates of the Source vertical position are

always within 30 feet of the actual value (400 feet). Since this error
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of 30 feet is comparable to the physical height of a submarine, the

error is entirely acceptable. Contrasting with this small error are

the relatively large errors produced by the pure time delay filter,

which for values of t > 15 minutes are in excess of 100 feet.

Note how in Figures 6.3.2 and 6.3.4 (and to a lesser extent in

Figure 6.3.3) the estimates provided by the pure time delay filter are

progressively getting poorer and poorer. For example, as time increases,

the amplitude with which these estimates oscillate is getting steadily

larger; near t - 0, the estimates are relatively close to the true values

but with each iteration the estimates diverge more and more. The under-

lying cause of this divergence is that the signal-to-noise ratio on

is rapidly deteriorating to the point where the noisy Tmeasurements,

z ,are virtually useless. For example, over the period t -0 to t
Ti

25 minutes, T1decreases from an initial value of 18 m.sec to a final

value of 6 m.sec. With additive white Gaussian measurement noise having

a 5 m.sec standard deviation, an initially marginal quality for 71

rapidly deteriorates to the point where the additive measurement noise

is of the order of the quantity being measured. The following specific

examples taken from the computer simulations used to produce Figures

6.3.2 -6.3.4 serve to illustrate this point.

(Actual Value in m.sec) z (Measured Value in m.sec)

16.3 23.3
13.7 19.6
10.7 16.6
7.0 0.1

The hybrid filter, on the other hand, performs remarkably well when con-I

fronted with these same measurements. The progressive deterioration in
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the quality of the estimates encountered with the pure time delay filter

is noticeably absent from the hybrid filter's estimates. In fact, the

high quality of the estimates produced by the hybrid filter at the be-

ginning of these plots when the z '1measurements are of marginal quality,

is maintained throughout the remainder of the plots even when z becomes

virtually useless.

The reason for the superior performance of the hybrid filter is

obvious; the high quality of the estimates (6.2.1) produced by the Adap-

tive Doppler tracking filter (which is immune'to the debilitating effects

or poor quality Sin on the time delay measurement data) is sufficient to

arrest the deterioration caused by the decreasing SNR on T l Thus the

initial high quality of the estimates produced by the reduced order

sonar time delay filter is maintrained throughout the entire time period.

iiiA factor which aids both filters in the above tests is the
high SXR oil the r*2 measurements. The ocean depth of 6000' produces

values of r 2in the range 721 m.sec - 286 m.sec.

In the next series of tests the ocean depth is reduced to 3000'

with all initial conditions and filter parameters remaining unchan~ged.

This reduction in the depth of the ocean reduces the values of -

to one-fifth of their previous values. The values of r I remain

the same as before. Thus, coupled with an already very low SNR on Tl

is a realtively low SNR on T 2 In addition, the Source executes

a maneuver which causes its radial velocity (with respect to the moving

Observer) to change from an initial 16 ft/sec to a final 10 ft/sec.

These conditions collectively provide a much more rigorous test of

both filters.

108



0 o

.0

OJ.

'A 'A

"4

1099



-4

t14.

C44

110



41
Li

1--4

0

44

hi A i

0

V4

41-

slows



4
41

_ _ _ _ _ 
_m 

Da 0

112



'a

-4 -4

0

*l -A-4 Zj

V (v 0
W -4

044 IT c

044

113



I

0%

0 c~9

0
1..
0

Cz.

u-I
0

0
0 0

U

U,
0

'-V -4
i-A

0
0 0

--4
5-

0
-A

'.0

0
I-I

cc
-A

'I
0
0

'-V

0
0

N

4 I I I
C'4 ~'9 -t U, '.0

0% 1- U,

'.0 -t C%1

I
I

II 114

-
- - -.- --.-- ---- -- -



The effct of the very low ONR on T2in addition to that OnT

is immediately evident from Figure 6.3.5 and its continuation Figure

6.3.6 where the percent error produced by the pure rime delay filter is

from three to five times greater than the corresponding values in Fig-

ure 6.3.2. These large percent errors (13% - 25%) stand in marked con-

trast to the very small percent error (0% - 3%) produced by the hybrid

filter when presented with the same measurement data.

j In Figures 6.3.7 and 6.3.8 the hybrid filter's estimates of the

Source radial velocity which are generally within ±1 ft/sec of the true

value are far superior to the highly oscillatory estimates produced by

the pure time delay filter. The hybrid filter also responds much more

rapidly to the Source maneuver at t - 4 minutes. 'For example, by t -6

minutes, its estimates have converged to the new value of the Source

radial velocity whereas the other filter exhibits a very sluggish re-

sponse which lasts until t -12.5 minutes. Thus the response time of

the hybrid filter is one-fourth that of the pure time delay filter.

This fast response by the hybrid filter is a direct result of embedding

its adaptive feature in the Doppler frequency filter.

The estimates of the Source vertical position produced by :he

hybrid filter in Figures 6.3.9 and 6.3.10 continue to be generally

within 30 feet of the true value. This error is entirely acceptable for

the reasons stated earlier. The estimates produced by the pure time

delay filter, on the other hand, are in error by several hundred feet

for values of t > 17 minutes.

The progressive deterioration of the pure time delay estimates,

originally encountered in Figures 6.3.2 - 6.3.4, is even more pronounced

in Figures 6.3.5 -6.3.10. The reason for this, of course, is that in
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addition to a very low SNR on TVthe SNR on T2is much lower in the

latter set of figures than is the case in Figures 6.3.2 - 6.3.4. The

immunity to these low SNR ratios which the Adaptive Doppler frequency

filter enjoys is what enables the hybrid filter to maintain its consis-

tently superior performance in both series of tests.

These high quality estimates of both the Source radial and ver-

tical positions produced by the hybrid filter under very low SNR onT

t2

filter, like the pure time delay filter, is also an Extended Kalman fil-

ter. It is well known that the Extended Kalman filter algorithm dis-

plays large errors and biases under low signal-to-noise ratios.

This fact makes the performance of the hybrid filter in this chapter

all the more remarkable. In Figures 6.3.5, 6.3.6, 6.3.9 and 6.3.10,

with a low SNR on T2and an SNR on T1which makes z virtually use-

less most of the time, the estimates produced by the reduced order sonar

time delay filter show a relatively small degradation compared to that

suffered by the pure time delay filter. In addition, this good per-

formance by the reduced order filter is maintained in the presence of

an abrupt Source maneuver.

6.4 Conclusion

In this chapter an integrated Adaptive Doppler frequency-

reduced order sonar time delay tracking filter is developed by com-

bining the filters developed in Chapters 3 and 5. This hybrid filter

exploits the best features of both constituent filters by using the

high quality estimates of the Source radial velocity and control input

provided by the Adaptive Doppler frequency filter to improve the
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estimates of the Source radial and vertical position produced by the

pure time delay filter. For example the immunity to sonar time delay

measurement noise which the Adaptive Doppler frequency filter enjoys,

has carried over to the reduced order sonar time delay filter. Under

low SNR conditions on both time delays, the large errors in the es-

timates of the Source radial and vertical positions produced by the

pure time delay filter of Chapter 3 are noticeably absent with the

reduced order filter. In addition, the hybrid filter's response time

to a maneuver by the Source is found to be one-fourth that of the pure

time delay filter.

The parameter values used in this study of the hybrid filter

may not be such as to yield optimal filter performance; therefore, any

further investigation of this filter's characteristics should include

a srnsitivity analysis of these various parameters. Such an analysis

might well yield a more "optimal" set than the one used here.

SUMMARY

Modeling of the target control input as a series of partially

overlapping Gaussian curves worked well against air targets in the past,

it was decided to apply this technique to the problem of passively

tracking an underwater maneuvering Source from a moving Observer. In

order to do this, it was necessary to carefully evaluate the benefits

that the various coordinate systems have to offer given the generally

higher nonlinear types of measurement data available for passive

tracking. When polar coordinates were chosen as the most suitable

coordinate system, a linearized polar model for the maneuvering Observer-
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Source scenario was developed which solved the difficult problem of

4 compensating for the Observer's own motion. This choice of polar co-

ordinates represents a significant departure from the existing trends

in the literature which generally show an unquestioned preference for

rectangular coordinates. Indeed, one of the major contributions of

this report is to show that for the small added complexity needed to

compensate for Observer motion in polar coordinates, considerable fil-

ter simplification can be bought in the processing of all the types of

available data--sonar time delays, bearing, and Source-emitted fre-

quency spectra. With rectangular coordinates, on the other hand, where

compensation for Observer motion is extremely simple, the filter is

generally more complex than in the polar case. It is shown, for ex-

ample, that in processing sonar time delays the linearized measurement

matrix using rectangular coordinates is at least one order higher than

that needed with polar coordinates.

Using partially overlapping Gaussian curves to model the Source

control input and with measurement data consisting of both surface and

bottom reflected sonar time delays, the estimates of the Source radial

velocity produced by the polar filter were found to exhibit some os-

cillations even under high measurement SNR conditions.

As a result of these oscillations, a new technique using the

Doppler effect was developed whereby high quality radial velocity esti-

mates are obtained from the frequency spectra emitted by the Source.

The processing of these spectra, which are either unnwnf conl6.tOJt tones

c04 nA~otband tandom ptoceme4, is a highly nonlinear estimation problem,

which when implemented on the polar filter became linear and time varying.

118



Another important result of this report was to show how high quality

information about the Source radial velocity and control input can be

obtained from these unknown spectra using tl.e Doppler effect. In

addition, and in spite of the nonlinearity of these noisy frequency

measurements, the information was obtained using only linear estimation

techniques.

Next, an integrated filter was developed by combining the

Doppler frequency filter with a reduced order sonar time delay filter.

The estimates produced by this integrated filter are generally superior

to those produced by the pure time delay filter. This superior per-

formance was maintained under low SNR on both sonar time delays and

represents a major contribution.
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